

A Systems Approach to Safe System Integration in Major Rail Projects

Dr Raden Kusumo 13 October 2019

safe railways for Australia

Presentation

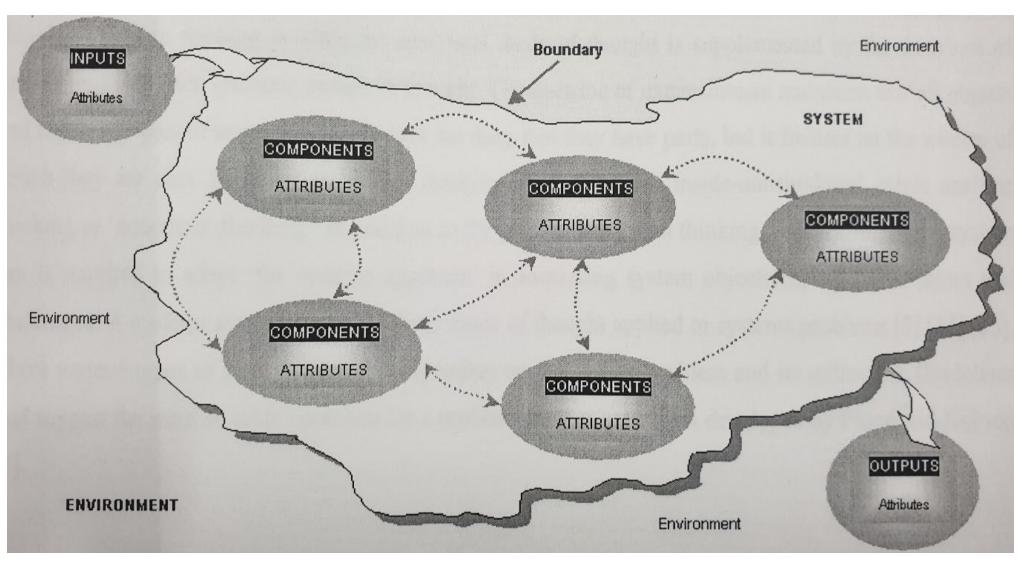
- Complexity in major rail projects.
- > RSNL requirements on system integration.
- > A systems approach to system integration
- > System integration through out system lifecycle
- Case Study

Complexity in major rail projects

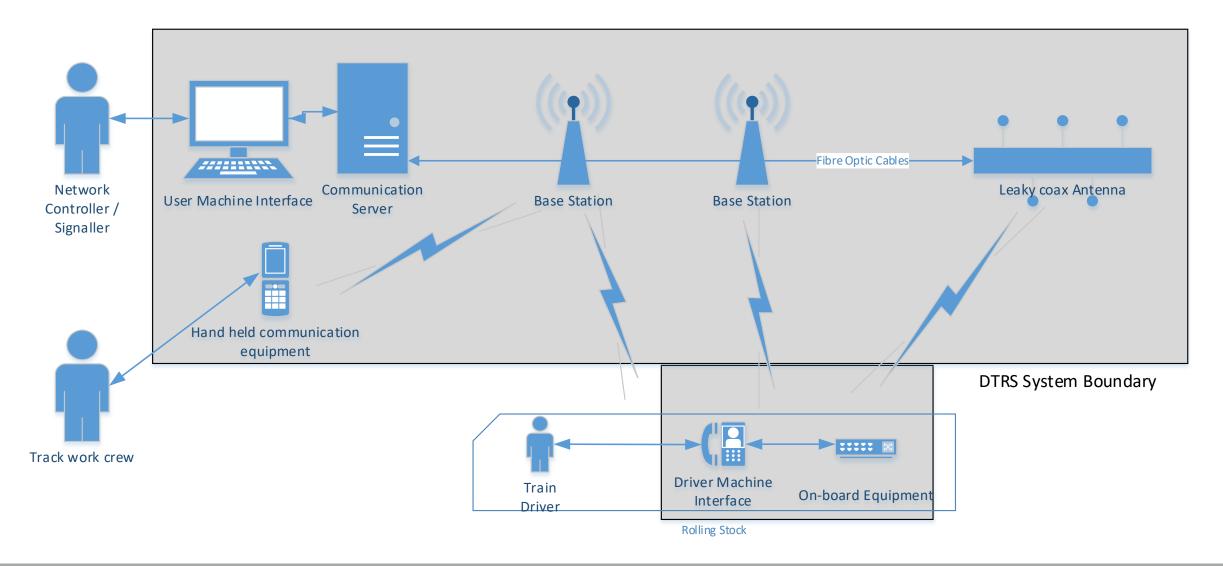
- > Railways rely on various interdependent systems:
 - operate seamlessly together forming a system of systems of system
- > Major projects complexity:
 - implement/change a number of rail systems
 - new and legacy systems
 - variety of complex technologies
 - different suppliers for subsystems
- Rail systems must be safely integrated to ensure safe railway operations

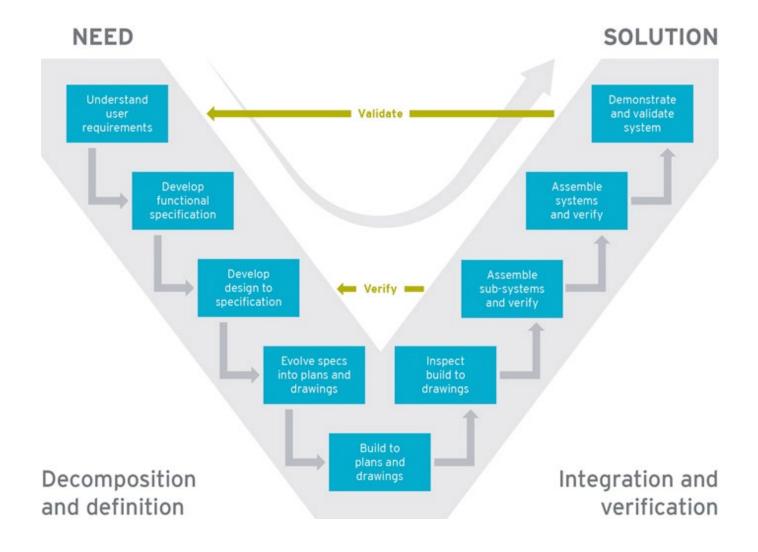
RSNL requirements on system integration

- > No specific requirements.
- > RSNL related requirements:
 - S.46 Management of risks
 - S.52 Duties of rail transport operators
 - S.53 Duties of designers, manufacturers, suppliers, etc.
- > RSNL Regulation related requirements:
 - Sch 1, C.12 Management of change
 - Sch 1, C.19 General engineering and operational systems safety requirements
 - Sch 1, C. 20 Process control



Why adopt a systems approach?


- Allows projects to manage the increasing complexity of railway systems integration
- Ensures projects can meet their safety duties that are stipulated in the RSNL


A systems approach

Typical Train Radio System (TRS)

A system life cycle

A systems approach to system integration

At each lifecycle phase determine:

- > How the subsystems will be integrated?
- > How these subsystems will interface with:
 - Existing railway infrastructure
 - Different types of rolling stock
 - Different types of user

Requirement specification phase

Specify interface requirements:

- > Between subsystems
- > With legacy systems
- Safety Related Application Conditions (SRACs) on the existing railway systems

TRS interface requirements

- Functional
 - REC management
- > Operational
 - DMI interactions

Physical

- DMI in-cab position
- > SRACs
 - Electromagnetic emission

Design phase

- Interface compatibility between connected railways systems.
- > Risk assessment:
 - Interface failures
 - Overall system failures
 - Railway operations safety
- Compliance with SRACS.
- Risk control verification.

TRS design phase

- Interface compatibility analysis
 - Batteries power interface
- Interface hazard analysis
 - UMI interference
- > System hazard analysis
 - DMI alarm failure
- > SRACs compliance
 - Electromagnetic emission
- > Risk control verification
 - Alarms to monitor power supply

Installation phase

- Installation and configuration errors may result in:
 - System failure
 - Wrong side failures of interconnected systems
- > System interface verification:
 - Correct implementation
 - Conformance with design
- > Risk assessment:
 - Design deviation

System testing phase

- > System standalone tests:
 - Factory Acceptance Test
 - Site Acceptance Test
- > Include testing system interfaces:
 - Legacy systems interfaces
 - Subsystems interfaces

TRS system testing

- > Safely receive the inputs:
 - Clearly receiving emergency voice communication
- > Safety functions are not compromised:
 - failure of local power supply
- > Safely generate the required outputs:
 - Clearly transmitting emergency voice communication
- > Outputs will not compromise interconnected systems:
 - Interference with the signalling systems

System integration phase

> Safety verification & validation:

- systematically testing the effect of one subsystem on another subsystem
- changes in the behaviour of subsystems
- changes in the behaviour of whole integrated system

> Safety verification:

- safety related system is built right
- completeness, correctness and consistency
- Safety validation:
 - right safety system is built

TRS system integration

- > Function correctly
 - Transmit emergency calls
- Meet operational requirements
 - Transmission delay
- > Will not compromise existing systems
 - Interference with signaling systems during testing
- Management of risks associated with:
 - Testing activities
 - Changes in system configuration

System operation & maintenance phase

- > Continuously monitor:
 - All faults and corrective actions
 - All residual risks
 - All system SRACs

TRS operation & maintenance phase

> Operational faults:

- Connectivity with other train communication systems
- Drop out rates
- > Effectiveness of risk controls:
 - Driver training
- Compliance with SRACs:
 - Power monitoring alarm

Case Study

TRS Implementation:

- > Modified-of-the-shelf
- > SIL 0 according to CENELEC Standards
- Installed in multiple rail corridors and different train types.
- Design, installed and tested as stand alone system
 - Using limited number of base stations

Case Study

- Initial testing shows significantly higher time delay in transmission:
 - Fails to meet operational and safety requirements
- > Internal software modification:
 - Optimise base station selection
- Impact of modification:
 - Additional risk assessments on faults and modification.
 - System retesting
 - System SIT retesting for each rail corridor and train type
 - Additional safety artefacts to demonstrate safe SFAIRP.
 - Delays to project.

Questions & Discussion

Thank you